Unit Testing AngularJS Components & Services

Unit testing is a very important part of software development, and it is extremely important to Angular applications as they become increasingly more complex. We’ll explain how to set up your unit tests and describe what you can actually test with some examples.

Intro

Unit testing is a very important part of the software development process, especially as your applications become more and more complex. Making sure your code is robust and adaptable is an important aspect of being professional. This is no less true with your AngularJS application.

If you are reading this, you are most likely already sold on unit testing but here’s some benefits and reasons for writing and maintaining your unit tests:

  • The ability to quickly update your code and make sure you are able to regressively test your code.
  • Updating your unit tests to cover a fixed bug will prevent the bug from getting re-introduced!
  • Use a CI to make sure EVERYONE on your team is testing the code.

Angular CLI, Jasmine & KarmaJS

Here at Arroyo Labs we use the latest version of Angular CLI a lot. It’s a great way to start a project very quickly provides a great start for your application. It also gives you some boilerplate unit tests for each component and service you create using the CLI.

While we have explained Jasmine and KarmaJS in past blog articles, here is a quick overview explaining how these frameworks work together:

  • Jasmine
    • A very popular behavior driven Javascript testing framework with a very clean syntax.
  • KarmaJS
    • A framework that allows you to run your Jasmine tests on a device or headless browser. The test runner itself will provide a DOM with which your code is rendered and provides the API that Jasmine will interact with.

Setting up your tests

To create a unit test, you need to include a consistent environment in which to run your code under test and we need to control the required classes and variables that go into creating this environment. Thanks to the magic of dependency injection, we can mock up some classes used by our classes and code.

Let’s take a look at the ‘top’ portion of a unit test we use in our user-admin project (you can find the whole unit test in our repo):

/**
 * Import some basic testing classes and utilities from AngularJS's
 * core testing code. This is the minimum required code to create 
 * a basic unit test.
 */
import {
     async,
     getTestBed,
     TestBed
} from '@angular/core/testing';

/**
 * Import some specific test classes used to mock the 
 * http backend and connection classes
 */
import {
    MockBackend,
    MockConnection
} from '@angular/http/testing';

/**
 * Import the HTTP classes we use in our service
 */
import {
    BaseRequestOptions,
    Http,
    Response,
    ResponseOptions,
    XHRBackend
} from '@angular/http';

/**
 * Finally, we import the required custom classes we use in our service,
 * and the service we are testing as well.
 */
import { User }         from '../shared/models/user.model';
import { AuthService }  from './auth.service';

import { UsersService } from './users.service';

What should we test in a service?

To test a service, we have to understand the underlying concept they represent: isolating logic and code into a re-usable class. This means we have a class we can pass around in our application where we get and manipulate data in expected ways.

Keep in mind, we can really only test publically scoped variables and functions. The unit test itself is really only able to interact with your service in the same way that an application is able to.

So, we have these things to test:

  • What public variables get initialized when we create the service?
  • Do public variables update as we expect when we call public functions?

Example Service Unit Test: UserService

In our UserAdmin project, we have a service called UserService used to interact with and manipulate user data we get from the AJAX backend.

The service itself only has quite a few public methods (it’s a very important class!) so we will focus on just two of the suite’s tests of the same method `getUsers`:

getUsers should return an empty observable list when the ajax request is unsuccessful

This is a test to make sure we return an empty list of users if the AJAX response does not contain an encoded list of users. This is a negative test, we are making sure that we return an expected response even when the backend returns an error.

it('#getUsers should return an empty observable list when the ajax   request is unsuccessful', () => {

 // set up the mocked service to return an
 // unsuccessful response (no users, 500 status)
 // with a helper method
 usersBodyData.success = false;
 setupConnections(backend, {
     body: {
         body: usersBodyData // use the previously init'd var for consistent responses
     },
     status: 500
 });

 // set up our subscriptions to test results 
 // when we actually get a result returned
 service.users$.subscribe((res) => {
     if(res) {
         expect(res).toBeTruthy();
         expect(res.length).toEqual(0);
     }
 });

 service.total$.subscribe((res) => {
     if(res) {
         expect(res).toBeTruthy();
         expect(res).toEqual(0);
     }
 });

 // make the actual request!
 let res = service.getUsers();

});

getUsers should return an observable list of users and result total when the ajax request is successful

This test makes sure that we get an observable list of users if the AJAX response is successful. To make sure this happens, we mock the response as though we have a JSON encoded list of users.

it('#getUsers should return an observable list of users and result total when the ajax request is successful', () => {
 // set up the mocked service to return an
 // unsuccessful response (users, 200 status)
 // with a helper method
 setupConnections(backend, {
 body: {
 body: usersBodyData
 },
 status: 200
 });
 
 // set up our subscriptions to test results 
 // when we actually get a result returned
 service.users$.subscribe((res) => {
 if(res) {
 expect(res).toBeTruthy();
 expect(res.length).toEqual(2);
 }
 });
 
 service.total$.subscribe((res) => {
 if(res) {
 expect(res).toBeTruthy();
 expect(res).toEqual(2);
 }
 });
 
 // make the actual request, with some params to pass via query string
 // we will explore this in a future post
 let res = service.getUsers(42, 42, 'id', 'desc');
});

What should we test in a component?

A component, like a service, is also a re-usable piece of code but it also has a defined lifecycle from its parent class and a frontend element via it’s template and optional CSS.

So, here is what we have to test:

  • Does this component actually get constructed?
  • What public variables get initialized and what DOM elements get rendered when we create the component?
  • Do public variables update as we expect when we call public functions?

Like we have noted above when discussing testing a service, you can really only test things that have been scoped as public by the component itself. This does include rendered DOM elements and you should test that these elements appear and render as expected since these are made public by the component itself.

Example Component Unit Test: UserListComponent

Test that the component actually results in a rendered component

it('should create', () => {
   fixture.detectChanges();
   const compiled = fixture.debugElement.nativeElement;
   component.ngOnInit();
 
   component.users = [];
   component.total = 0;
 
   // do we have a component at all?
   expect(component).toBeTruthy();
 
   // create new user button
   expect(compiled.querySelector('.btn-info')).toBeTruthy();
 
   // do we have a table
   expect(compiled.querySelector('table')).toBeTruthy();
   expect(compiled.querySelectorAll('tr').length).toBe(2);
});

Test that we display a list of users with a mocked response

it('should display list of users', () => {
   fixture.detectChanges();
   const compiled = fixture.debugElement.nativeElement;
 
   setupConnections(backend, {
       body: {
           body: bodyData
       },
       status: 200
   });
 
   component.ngOnInit();
 
   // create new user button
   expect(compiled.querySelector('.btn-info')).toBeTruthy();
 
   fixture.detectChanges();
 
   // do we have a table with users?
   fixture.detectChanges();
   expect(compiled.querySelectorAll('tr').length).toBe(21);
 
   // do we see the expected page count
   expect(component.getPageCount()).toBe(2); 
});

Conclusion

Unit testing is a not a oft-celebrated portion of the software development cycle, but it is an important part of the process. Once you have good tests in place, you can pivot direction and update your code with an increased sense of security.

Angular 2 VideoJS Component

Using components is a fantastic way to include 3rd party libraries like VideoJS in your Angular 2 application.

We have talked previously about the basics and different types of Angular 2 components, but today we will give you a practical example of using Angular components to wrap an external library. We will focus on the excellent video media player library VideoJS, but this can really be applied to many other libraries as well.

Using external libraries in Angular 2

To actually use some 3rd party libraries within an Angular 2 application, you need to jump through some hoops. Most libraries require direct access to the DOM model and expect full control of the DOM rendering cycle. Part of the magic of Angular 2 is ceding some of that control to allow it to render when it feels like it.

To get around this hurdle you simply need to wrap your 3rd party libs in a way that gives more control to Angular and allows the 3rd party library access to the DOM via the application lifecycle.

Most 3rd party libraries, like VideoJS, would have been wrapped in a directive in previous versions of Angular. In our example we will use a component, but it is possible to use a pipe or a service depending on your 3rd party library.

VideoJS

VideoJS is a (rightfully) popular media player library that makes it easy to skin and control media files. This library can handle many types of media files like MP4s, MOVs and even YT (with a plugin).

Videos have traditionally been a tough element to render consistently across browsers. Given the rather recent support for the HTML 5 video element things have gotten better, but it has always been a little tough to consistently style the player itself. VideoJS both abstracts out the skin and API hooks which make things much easier than in the past.

One of the reasons we chose this library for our example is that it’s pretty self contained. It does not require external libraries like jQuery and is also relatively small.

VideoJS Component

Check out this plnkr to see the example VideoJS component.

First things first: include the VideoJS library assets in the application HTML head so we can use it with our component.

<link href="https://vjs.zencdn.net/5.11/video-js.min.css" rel="stylesheet">
<script src="https://vjs.zencdn.net/5.11/video.min.js"></script>

Our example component is pretty simple, lets take a look at some of the component code itself:

The template code

  <video *ngIf="url" id="video_{{idx}}"
     class="video-js vjs-default-skin vjs-big-play-centered vjs-16-9"
     controls preload="auto"  width="640" height="264">
     
    <source [src]="url" type="video/mp4" />
   
  </video>

This is a pretty simple template, and really only consists of a video element with some CSS classes and a source element.

Some things to note in the template code itself:

Prevent rendering the element itself unless we have a video URL:

*ngIf="url"

Add a unique index to make sure we can reference this element alone:

id="video_{{idx}}"

Add a `source` element for the video url itself:

<source [src]="url" type="video/mp4" />

Initialize the Player in ngAfterViewInit

We need to wait until the component template is rendered before we can let VideoJS do it’s magic. In order to let Angular tell us when the component’s lifecycle has reached that point we use a specific event hook called ngAfterViewInit that fires when the component template has been been completed.

Check out the code below to see this in action:

  ngAfterViewInit() {
    
    // ID with which to access the template's video element
    let el = 'video_' + this.idx;
    
    // setup the player via the unique element ID
    this.player = videojs(document.getElementById(el), {}, function() {
      
      // Store the video object
      var myPlayer = this, id = myPlayer.id();
      
      // Make up an aspect ratio
      var aspectRatio = 264/640;
      
      // internal method to handle a window resize event to adjust the video player
      function resizeVideoJS(){
        var width = document.getElementById(id).parentElement.offsetWidth;
        myPlayer.width(width).height( width * aspectRatio );
      }
      
      // Initialize resizeVideoJS()
      resizeVideoJS();
      
      // Then on resize call resizeVideoJS()
      window.onresize = resizeVideoJS;
    });
  }

Component Element

Include the VideoJS component in your component:

<videojs [idx]="idx" [url]="video"></videojs>

If you check out our plnkr you can see this on the app.ts you can see we support multiple video elements as well.

Conclusion

Components are a great way to help separate your coding concerns, and are a major building block in creating an Angular 2 application. They are also great to encapsulate and add some sanity to 3rd party libraries that you wish to use in your projects!

If you have any comments concerns or questions, please let us know in the comments!

oAuth – Part 1

OAuth 2.0 is the industry-standard protocol for authorization.

Overview

Welcome, today I will go through the oAuth protocol, some definitions and how it works. In a later post I will show an example of how easy it is to use oAuth with the Erdiko Authenticate package and php league packages.

What is oAuth?

I bet most of you have the same question. We can simply say that it is a protocol definition for authenticate and authorize third party applications to have access to certain user data, without sharing password with the third party app.
In other words, your application will have a token provided from a trusted service (let’s say Facebook, Twitter or any other commercials) once a user has authenticated. That way, you delegate the authentication process to this third-party server. Additionally, with this token you can access to some user’s information, previously granted by user, e.g. profile information.
When using this method we can store the token so our application doesn’t need to remember any extra authentication credentials, don’t need to fill profile fields every time register in a website, relay the security in a Trusted System.

OAuth 2.0

As per oAuth 2 site:
OAuth 2.0 is the industry-standard protocol for authorization. OAuth 2.0 supersedes the work done on the original OAuth protocol created in 2006.

The new version focus on client develop simplicity, and provides specific flows for Web, Desktop and Mobile developments.

Components

Components or oAuth Roles, are the main pieces involved in the auth flow.
  • Client
  • Resource Server
  • Authorization Server
  • Resource Owner
Now let’s break them down:
Client (The Third-Party Application)

Is the application that is attempting to get access to the user’s account. It needs to get permission from the user before it can do so.

Resource Server (The API)

This is the server or service used to access user’s information through an API.

The Authorization Server

This server presents the interface where the user approves or denies the request. In smaller implementations, this may be the same server as the API server, but larger scale deployments will often build this as a separate component.

Resource Owner (The User)

The resource owner is the person who is giving access to some portion of their account.

Protocol Flow

  1. The application requests authorization to access service resources from the user
  2. If the user authorized the request, the application receives an authorization grant
  3. The application requests an access token from the authorization server (API) by presenting authentication of its own identity, and the authorization grant
  4. If the application identity is authenticated and the authorization grant is valid, the authorization server (API) issues an access token to the application. Authorization is complete.
  5. The application requests the resource from the resource server (API) and presents the access token for authentication
  6. If the access token is valid, the resource server (API) serves the resource to the application

You can implement this abstract flow in different ways based on the target architecture: Web Application and Client Application. Where the first one could be any of common web sites that allow us to login using our Facebook or Twitter user, and the last one could be a mobile or desktop app.

In both cases, before start using oAuth, you need to register the application in the Service Provide system, that way you will obtain a client_id and client_secret. The client_secret should be kept confidential and only used between application and Service Provider.

Once you have registered your app,  the first step is to get authorization from the user.

This is usually accomplished by displaying an interface provided by the service to the user.

The version 2 provides several “grant types” for different use cases. The grant types defined are:

  • Authorization Code for apps running on a web server, browser-based and mobile apps
  • Password for logging in with a username and password
  • Client credentials for application access
  • Implicit was previously recommended for clients without a secret, but has been superseded by using the Authorization Code grant with no secret.

The first step is create a login link to redirect a user to Auth Server where will be authenticated. This link might include the callback URL (this could vary depends on server implementations, some systems require the callback URL in the app registration form). This is the URL user will be redirected to after login.

In case of success this redirect will include a Grant Code, that will be needed in the Token Exchange step.

After a succeed login, with Grant Code and Access Token the client app, will request the access token, that will be used as credential on future request.

Final thoughts

Hope this roughly overview brought up some light into the oAuth Protocol concepts. In the next episode, I will bring you a practical example of how to implement a client module with erdiko/authenticate package.

Testing a REST API with Frisby.js

When our web app depends on pulling data through a REST API, we need to test that the endpoints well. Thats where things become more complicated and tedious to do manually. Two great libraries, Jasmine.js and Frisby.js, can help us out here.

What is Frisby and how does it work?

We are software developers and we strive to write good code.  We try to ensure the quality of every line and workflow which in turn means testing.  Manual testing works to a point but without automated testing of REST APIs and Ajax endpoint regression testing becomes cumbersome.  Are you really going to test all the possibilities/permutations with Postman?  I didn’t think so.

Testing a REST API is not so different to testing modules, but to create “end-to-end” test cases we needed make real endpoints calls. A manual testing job quickly becomes a tedious task, so we need to find a way to make things automated.

Frisby is a REST testing framework built on node.js and jasmine, and makes testing API endpoints a very flexible and easy task.

As any normal npm package running in node, Frisby needs node.js installed first, after that you can install Frisby as a common package:

npm install -g frisby

By convention, the file name containing the Test Suite, should include the trailing word “_spec.js”, node.js runs in javascript so logically js is the extension.

In order to continue our intrduction we will study the roleAPI_spec.js, a test suite part of the package Users of Erdiko Framework:

var frisby = require('../node_modules/frisby/lib/frisby');

This is the “kickoff” for our test suite, we instance the library in a Frisby variable, it will be our object to along  the suite.

describe('Role api test suite', function() {
  var baseURL = 'http://docker.local:8088/ajax/users/roles/';
  /**---This case test the api response and check the result----*/

  frisby.create('Get all roles')
        .get(baseURL + 'roles')
        .expectStatus(200)
        .expectHeader('Content-Type', 'application/json')
        .afterJSON(function (response) {          
            expect(response.body.method).toBe('roles');
            expect(response.body.success).toBe(true);          
            expect(response.errors).toBe(false);
            expect(response.body.roles).toBeDefined();
        })     
        .toss()
});

All  Frisby test starts with frisby.create(‘A gently worded description of test’) and next we must specify the verb to make the call to our endpoint. It is obvious but must match with the endpoint structure.

In our case we used .get(baseURL + ‘roles’)

Differences between using post or get.

There are differences between verbs post and get. When we create post test cases, we should pass objects as arguments, let’s see an example grabbed from userAPI_spec.js from Users package of Erdiko framework:

/*---------------------------------------------------------*/
/*-----------------Create User success --------------------*/
frisby.create('Creation will success.')
 .post(baseURL + 'register',
 {"name":"NameTest",
  "email":"test@email.com",
  "password":"secret"},
 { json: true },
 post_header)
 .expectStatus(200)
 .toss()

By default, Frisby sends POST and PUT requests as application/x-www-form-urlencoded parameters. If we want to send a raw request content, we must use { json: true } as the third argument to the .post().

Using Expectations.

/**--checking creation with expectations --*/
frisby.create('Checking user created exist.')
    .get(baseURL + 'retrieve?id=' + USER_ID)
    .expectStatus(200)
    .afterJSON(function (response) {
        expect(response.body.method).toBe('retrieve');
        expect(response.body.success).toBe(true);
        expect(response.body.user.id).toBe(response.body.user.id);
        expect(response.body.user.email).toBe(newUser.email);
        expect(response.body.user.name).toBe(newUser.name);
        expect(response.body.user.role.id).toBe(newUser.role);
    })
   .toss()

In comparison with our traditional phpunit, the framework to create unit test cases in php, we could say that phpunit Asserts are analog to Frisby Expectations. In particular, we are interested by that expectations to handle json code. Because that we are use the ‘expect’ clause that compare the API response with a parameter provided by us:

expect(response.body.method).toBe('retrieve')

Here we expect that ‘response.body.method’ be equals to the string ‘retrieve’. It’s important to mention that the comparison is by type and value at same time and both should match to result ‘true’.

After explain that we have a few expectations used:

  • expectJSON( [path], json )
  • expectJSONTypes( [path], json )

Managing Headers, afterJSON()

/**-----------delete user created ----------------*/
frisby.create('removing user created.')
    .get(baseURL + 'cancel?id=' + USER_ID)
    .expectStatus(200)
    .afterJSON(function (response) {
        expect(response.body.method).toBe('cancel');
        expect(response.body.success).toBe(true);
        expect(response.body.user.id).toBe(USER_ID);
    })
   .toss()

As we said previously, Frisby is an extension of Jasmine.node, and afterJSON is a very good evidence because afterJSON is the extension of after() with the convenience of parse the body obtained as response as JSON values automatically. The ‘after’ occurs immediately after the response is sent from the endpoint call and is used as a callback.

Using inspectors, inspectJSON()

Inspector helpers are useful for viewing details about the HTTP response when the test does not pass, or has trouble for some reason. They are also useful for debugging the API itself as a more user-friendly alternative to curl.

// Console output
{ url: 'http://theurl/get?foo=bar',
    headers:
    { 'Content-Length': '',
        'X-Forwarded-Port': '80',
        Connection: 'keep-alive',
        Host: 'httphost.org',
        Cookie: '',
        'Content-Type': 'application/json' },
    args: { foo: 'bar'},
    origin: '127.0.0.1' }

Basically inspectJSON() prints the raw HTTP response, other similar and general inspectors are:

  • inspectBody()
  • inspectHeaders()
  • InspectRequest()
  • InspectStatus()

Conclusion

Frisby makes it possible to write end-to-end tests with a lot of flexible tools and the process of test a complete REST API turns fun and easy. We miss the ability to ‘serialize’ test cases as in a regular test unit framework. Given the nature of javascript its possible to chain nested test cases and mimic, in some aspect, that behaviors.

We haven’t tried Newman yet, but hope to soon.  Let us know about your Frisby (and Newman) experiences.

Introducing the Erdiko User Admin

Introducing the Erdiko User Admin Package! A user administration package built with an Erdiko powered backend and a Angular 2 frontend.

We’re excited to introduce the Erdiko User Admin! A modular package that provides an attractive UX to allow you to manage your users.

This is still very much a work in progress, but since we’re so excited, we want to let everyone know about this project (and request some help to keep us moving).

Check out our User Admin Project at this Github Repository and our Packagist entry.

Project Features

We wanted to create a modular and simple User Admin you can ‘bolt-on’ a new or existing project. We keep this as lean and mean as we could, but still providing some cool stuff to help get you started.

While this package is still very much in development, it does provide some of the following features:

  • A sortable and paginated list of user records.
  • An attractive user interface allowing the user to create, edit & delete user records
  • JWT user authentication!

Here’s some screenshots of our UX:

Installation and Setup

The User Admin package is a part of the Erdiko module ecosystem. Installable and upgradable via Composer. This makes it very simple to start a new project via this simple command.

composer create erdiko/user-admin [PROJECT NAME]

Please note that as of this time, we have not created an official release. You will need to include the minimum stability flag when you create your project:

composer create erdiko/user-admin [PROJECT NAME] --stability DEV

Package Dependencies

Here’s a brief list (and a bit of a plug) of some of the other Erdiko Packages we as a team have been developing that we use to build this project. While we use these packages for our development, we have planned to make these as modular and replaceable as we can.

Here’s the list:

  • erdiko/core
    • The base package that provides our basic routing and templating.
  • erdiko/authenticate
    • Authenticate the user’s credentials to assert they are who they say they are.
  • erdiko/authorize
    • A package that helps us enforce some user roles.
  • erdiko/users
    • Our Erdiko package that provides the backend storage and basic routes we use to interact with these models.

AngularJS 2

We utilize the great Angular CLI project to start and maintain the Angular code itself. This project was a great boon to help us get started on a well structured and maintainable Angular application.

The internal structure is “just” a simple app, but we have updated the NPM script to compile and move the resulting files to an directory accessible to the Erdiko application Home route.

NPM Run Scripts

Here is a quick list and an explanation of some of the custom NPM run commands we have for this project.

  • Start the local Angular Development server: npm run start
  • Run the unit tests: npm run test
  • Run the e2e/functional tests: npm run e2e
  • Compile and export files for end user: npm run build

Next Steps

Here’s an incomplete list of some of the next things we plan on working on, and completing, with the project in the future:

  • Jasmine Unit Tests to cover our angular code
  • KarmaJS Functional Tests to cover the entire application end-to-end
  • A basic User facing profile designed for user extension

How to Contribute

If you have an idea for a new feature, have an idea on how to improve a feature, or (gasp) you have found a bug please report this on our Github Repo Issues page.

However if you are just excited about this project, feel free to “star” this repo on Github to show your support.

We would also love to know if and how you use this module in your own projects!

To set your environment up for local development, please follow these steps:

  1. Clone your fork of the User Admin project into a local directory
  2. Clone the following packages into the same directory
  3. Copy the composer-dev.json file to composer.json
  4. Start your docker container docker-composer up --build

Conclusion

Thanks for reading about our exciting new package! Feel free to leave a comment or ask questions below, or feel free to comment on our Github Repo page!

Themes in the Erdiko Framework (Part 2)

In the first post we talked about how themes works in the Erdiko framework and covered important files to configure it. We continue with more advanced Erdiko theme topics and introduce new classes to discover more features, including layouts.

Today, I’m going to show you more concepts around themes in the Erdiko framework.  There are more concepts and classes to know and understand.

Layouts

To introduce the Layout class we need to define what is a layout: it includes the HTML for a basic web application structure in order to provide your own content. After made this clarification, we realize that a layout could be made by one, two, three or whatever number of columns.

Let’s look at the next code from Erdiko framework:

/**
 * Get two column layout example
 */
public function getTwocolumn()
{
    // Set columns directly using a layout
    $columns = array(
        'one' => $this->getView('examples/one'),
        'two' => $this->getView('examples/nested_view')
        );
    
    $this->setTitle('2 Column Layout');
    $this->setContent($this->getLayout('2column', $columns));
}

This code is an action from Example controller from code base of Erdiko framework. We can see how passing an array of views we can get a new layout built with ‘2column’ parameter. This way we instruct to Example controller what design we want to set to our application, and the final result will be something like this:

2columns

It’s important to take care about this latest parameter, it must exist as layout in the layout’s folder and the name must match exactly. Let’s recall our Erdiko folder structure:

layouts

the key method is Controller->getLayout():

 $this->setContent($this->getLayout('2column', $columns));

Under the hood, the controller delegates to a new Layout object composed of 2 views (one for each column) the call to render html code:

return  $layout->toHtml();

Pages

In order to reuse code the framework gives the chance of include html code often used, i.e. Header and Footer. This kind of content normally stay static around  the application. When we say “static” talk about structure however we also could include mustache code within the pages by using the {{ variable }} sintaxis.

Header

The header is a good example of html code that probably will not change in our web app. Erdiko framework installation provides us a nice default html code in the file:
app/themes/bootstrap/templates/pages/header.html

Something interesting to comment is the next piece of code:

<div class="navbar-collapse collapse" id="navbar-main">
  <ul class="nav navbar-nav">
    {{# menu.main }}
        <li>
            <a href="{{href}}">{{title}}</a>
        </li>
    {{/ menu.main }}
  </ul>
</div>

Ok, what is that sort of tag “menu.main”? Don’t worry just let’s say that we can create a html menu programmatically. When we talk about “Regions” will expand a better explanation. One important thing to highlight: the menu is built from the key “menu” in application.json file.

Footer

Footer section is more or less the same concept we talked previously with “header” but applied to the footer of application. Erdiko framework provides a default footer, the big difference against Header is the region used:

<div class="col-lg-12">
        <ul class="list-inline">
            <li class="pull-right"><a href="#top">Back to top</a></li>
            {{# menu.footer}}
                <li><a href="{{href}}">{{title}}</a></li>
            {{/ menu.footer}}
        </ul>
        <p>{{site.copyright}} {{site.full_name}}<br />
           Powered by <a href="https://github.com/ArroyoLabs/erdiko"
                         target="_blank">Erdiko</a>
        </p>
</div>

This time, the region used is ‘main.footer’ and the key used from application.json is “menu.footer”.

FlashMessages

To conclude with pages, another great and useful example is FlashMessages that provides (and being redundant) a flash message on top of the header page and denotes something important to show to the user application.

Unlike Header and Footer, FlashMessages is a helper, and you can call it:

<?php $messages = \erdiko\core\helpers\FlashMessages::get() ?>

‘$messages’ is an array and you are able to loop around it in order to give html structure:

<?php foreach($messages as $message): ?>
   <div class="alert alert-<?php echo $message['type'] ?> 
     alert-dismissible" role="alert">
     <button type="button" class="close" 
             data-dismiss="alert" aria-label="Close">
                <span aria-hidden="true">&times;</span>
    </button>
    <?php echo $message['text'] ?>
   </div>
<?php endforeach ?>

If you can get messages, it’s logic that you can set messages too 😉 :

<?php 
$message ='This is a success message to show.';
//what color we want to show the message? 'danger' is by default.
$type = 'success';
\erdiko\core\helpers\FlashMessages::set($message,$type);
?>

Regions

In the first post when we talked about Mustache we understood how a content is rendered exactly in the right position into the html code. In order to conceive Regions, we can take the same concept, regions is just a “mark” in the html code to teach the framework about what kind of html structure we want to create, just in the right position where should be placed.

Let’s take the region part of footer.html:

 {{# menu.footer}}
     <li><a href="{{href}}">{{title}}</a></li>
 {{/ menu.footer}}

When the framework process this region tag, as result we will get a nice footer created programmatically. The million dollar question is:
– How the framework makes possible to know about footer structure?
Easy, Erdiko reads the section ‘menu.footer’ and iterates the key/values within  in application.json file.

Scripts and Styles

Previously, in our post “sample application using Erdiko Framework” we proposed as example a little dice to roll with a very simple view. That view used the controller method addJs() and addCss() in order to add css and js code to the view respectively. The method signature  is the next:

/**
 * Add Css includes to the page
 *
 * @param string $name
 * @param string $file
 * @param int $order
 * @param int $active
 */
public function addJs($name, $file, $order = 10, $active = 1)
{
    $this->getResponse()
        ->getTheme()
        ->addJs($name, $file, $order,$active);
}

Both methods share the same order and number of parameters.

Views

A view object is a piece of code to provide a visual representation of model data, in object terms is a very simple class where we can modularize our html code. Let’s take an example from Erdiko framework:

$this->addView('examples/about', $data);

here we add the view ‘examples/about’ to the  controller response. The views can receive parameters, here is the constructor:

public function __construct($template = null, $data = null, $templateRootFolder = ERDIKO_APP)
{
    $this->initiate($template, $data, $templateRootFolder);
    $this->setTemplateFolder('views');
}

by reading this code we can understand easy, what kind of parameters a view needs, look how the folder ‘views’ is assigned by default.

There is no more to talk about Views, the content will be rendered by the controller with addView() method internally, calling to:

$this->appendContent($view->toHtml());

Using properties

There are a set of  properties  defined and accessibles to the entire application, we can use it between {{ variableName }} in views or templates because are just keys/values already created in application.json config. file. To mention a few of them:
– site.name
– site. description
– site.copyright

Default.php

Default.php is, paradoxically, the default template theme applied to a given view. In a general manner, default.php is a complete html page with formal sections (head, body, etc) but instead make use of static code, it call the previously defined dynamic pages as header, footer and messages. Let’s see a fragment just to understand how the sections are referenced:

<?php echo $this->getTemplateHtml('header'); ?>
<?php echo $this->getTemplateHtml('messages'); ?>
<?php echo $this->getContent(); ?>
<?php echo $this->getTemplateHtml('footer'); ?>

where the method call:

$this->getContent()

what we want is to render the View code itself.

Conclusion

Erdiko framework provides a very flexible solution to easily change the aspect of a complete web application as complex as we propose it, the key to achieve that is setup properly all our config. files and templates.
Thanks for reading!

Dependency Injection

Dependency Injection is a widely used design pattern. We will define the concepts of this pattern and show a popular PHP implementation with a simple example.

What is DI?

Dependency Injection is a software design pattern that implements Inversion of control by decoupling software modules, introduced by Martin Fowler.

Usually a dependency injection container is used to manage and automate the construction and lifetimes of interdependent objects.

di_uml

Design pattern explanation and Use

Basically, if your class needs an object of other class, in this pattern you pass the dependency object as a constructor parameter or via property setters, instead of invoke factory or create dependency. You make it someone else’s problem.
Example 1:
class MyClass {
    private $objectA;
    public function __construct(ObjectA $object) {
        $this->objectA = $object;
    }
}
Example 2:
class MyClass {
    private $objectA;

    public function setObjectA(ObjectA $object) {
        $this->objectA = $object;
    }
}

In both examples, we don’t care how or where to create the objectA we just use it.

Some popular PHP DI-Container implementations

  • PHP-DI: is an interesting implementation of DI Container that has integration with several frameworks and IDEs like PHPStorm.
  • Symfony DependencyInjection: The DependencyInjection component allows you to standardize and centralize the way objects are constructed in your application.
  • Zend – DI: DI Container implementation for Zend framwork.
  • Pimple: Is a Dependency Injection Container from SensioLabs.

Pimple Presentation

This is an implementation from SensioLabs, and you guessed it, the same guys that created the Symfony libraries.

This is a friendly implemented package, lightweight and easy to use.
To install you just need to add to your composer.json,
$ ./composer.phar require pimple/pimple ~3.0
and you’re ready to use it!
$container = new \Pimple\Container();
Since it implements \ArrayAccess interface, you can store variables and factories as it was an array.
example of parameters:
$container['cookie_name'] = 'SESSION_ID';
an example of factory as a closure:
$container['session'] = $container->factory(function ($c) {
    return new Session($c['session_storage']);
});
It also provides methods to protect parameters, modify services after defined, extends, and more.
For more info refer to Pimple site.

Example Use Cases

Let’s imagine that we want to create factories dynamically based on a JSON configuration like this:
auth_config1
Then we can create a Trait with a method that will fill our container based on an argument that could be an array create from the decode of above JSON.
traits_builder
Here’s how we can use this trait:
di_using
Let’s break down the example above:
the class that implements the __construct method has defined a member attribute, container, that is an instance of Pimple.
Since we are using traits to buildAuthenticator, the result of the foreach block will be assigned into the class container attribute.
Within the build, we need to create a new temporary Pimple object. This is a hack I found to store nested containers.
This is needed because otherwise each time you attempt to add a sub-item within the “AUTHENTICATION” it overrides the previous one.
So once we have created all factories, we just set the temporal container in “AUTHENTICATION” cell of the main container.
To use your created object in the container you just need to do something like that:
$auth = $this->container["AUTHENTICATION"]["mock"];
$result  = $auth->doSomething();

Final Thoughts

This pattern is very useful and widely used these days especially in modern web development, in particular if you see it used in the Angular framework.
Even when you should pick the product that better match your requirements in each case, I can say that I feel very comfortable with Pimple. As I showed, it is very flexible, allowing you to create your own wrap class to customize its behavior and fit your needs.
Hope you enjoyed! Thanks for reading and see you on next posts!

Angular 2 Animations

Animations are a very important part of User Experience design for web applications. We’ll will explore how animations are created and configured in Angular 2 and provide some concrete examples.

Introduction

Continuing on our series of Angular 2, we’re now going to explore  animations in Angular 2. Clearly smooth animation and transitions are an important part of the UX design for interactive applications.

Let’s start off by talking about how we animated things in Angular 1.x.

Animations in Angular 1

Angular 1.x allowed for animations between states for a handful of directives and elements, which when coupled with the nature of an Angular application, presented some great results. Two methods were provided to allow the user to add these transition states: CSS and Javascript. While both methods had some pros and cons, it also led to different interfaces that could easily confuse a developer.

CSS transitions were provided simply by using CSS3 transitions, which have the benefit of not requiring additional JS libraries and are as fast as your browser can render. Most of the control of this style of animation is controlled by using a unique class name structure and Angular handles a class change based upon a unique naming scheme.

The ngAnimate module provided a Javascript interface to control animations. This module allowed the user to use (most likely) jQuery’s animation controls or a 3rd party JS lib to render animations. This has some benefits of allowing some fine grain control, but you were also limited to what the 3rd party library allowed you.

Animations in Angular 2

Angular 2 uses the Web Animations API to really let your browser control animations with the highest possible performance and timing control.

Unlike Angular 1.x’s interface, the entire animation library is contained within a single module. This allows for a common simple interface, but since it uses the Web Animation API, also allows the browser to optimize the animation control to a finer control that previously allowed by CSS3 only animations.

While I should note that this also requires a compatible browser to run these animations, there is a polyfill available to cover legacy browsers that is easily installed.

Let’s explore some of the basic concepts used for defining and controlling Angular 2 animations.

Triggers

Triggers are the term for a function that defines the states and transitions used for an animation. These are defined in the component annotation metadata fields and have a corresponding placement on a component’s template to indicate where an animation is applied when the end user interacts with the application.

Here’s an example of triggers defined in a simple component, and explains where we put the settings we explain later in this post:

animations: [
  trigger(
    'pState', 
    [
      state('inactive', style({
        transform: 'scale(.9)'
      })),
      state('active', style({
        fontWeight: "bold",
        transform: 'scale(1)'
      })),
      transition('active => inactive', animate('50ms ease-out')),
      transition('inactive => active', animate('50ms ease-in'))
    ]
  )
]

States

States are a defined condition, or a specific point in time by, that you can define in your Angular 2 component via a string. These finite conditions allows you to define a value you can pass into your components template to help set up your animation conditions. Examples of these states are “active” and “inactive” that can identify an element that is “On”. See our first example for a demonstration of these states.

Timing

Timing in Angular 2 is defined by three properties: duration, delay and easing

Duration controls how long an animation runs. Defined by a string or an integer in milliseconds or seconds, it’s never been easier to define the length of time a transition occurs. Here’s an example of a duration of two seconds “2s” and 200 milliseconds “200ms”.

Delay, much like you assume, is about the time that elapses between the trigger execution an the start of the animation. You can even define the delay in the same line you define the duration in this example where it last two seconds after a delay of 3 seconds: “2s 3s”

Easing is how angular controls the animation accelerates and decelerates during it’s runtime and is a pretty succinct way to add some ‘realism’ to your animation. Identified by a string, these have the same common names as the control parameter in CSS3. Some more information can be found here on this site, easings.net.

Callbacks

Callbacks are just methods called when an animation starts and stops. This is useful for executing code based on an animation’s timing, and if you have ever tried to chain commands together using browser timing alone, you will seriously jump for joy.

Here’s an example from the official angular guide with the callback methods “animationStarted” & “animationDone”:

...
  <li>
    (@flyInOut.start)="animationStarted($event)"
    (@flyInOut.done)="animationDone($event)"
    [@flyInOut]="'in'" >
    {{hero.name}}
  </li>
...

 

Example 1: P Tag State on Button Click

Our first example shows hows we can animate the two states (Active & Inactive) of a displayed P tag. Keeping this simple, we illustrate how to set up a component to use the animation library and how to set up two simple states and their transitions.

Click the gif of the plnkr below to see the code in an active plnkr:

ex_1-p_tag

Example 2: Multi-Step Animation with Callbacks

Our second example shows a multistep animation that uses keyframes to add multiple steps to a transition, and callbacks that output the start and end of each animation to the console.

Check out this plnkr, and open your console, to see this in action:

ex_2-multi-step

Conclusion

Animations add so much to web applications that it’s a mistake not to include them. Thankfully Angular 2 makes this easier to include and trigger your animations with minimal work from the developer.

Themes in the Erdiko Framework (Part 1)

As web applications and sites become more complex it becomes important to organize your view layers with themes. We explain how to leverage the Erdiko theming engine and how to keep your code tidy and consistent. This is the first of a series of posts about Erdiko theming.

Why do we need themes?

Typically when we start a new web project, we are focused on the workflow and technical details about how the applications will work and what solution will provide to the end user. At some point of the planning process, we should start thinking about how our application will look, what data will offer, and then we begin to define our needs:

  • What is dynamic and what is static
  • What will be changed according our business logic
  • What is the menu, header, footer etc

Most of the time the HTML code will deliver rendered data elements, but half the battle of frameworks is deciding how to organize your code.

remember that design patterns are tools that you can use to solve specific problems , In MVC the Controller is responsible for determining which View is displayed in response to any action including when the application loads, if some parts of the view are very similar probably you need themes, don’t reinvent the wheel!

Currently we can find this behavior in any web application or SPA :

  • The header and footer are consistent across pages
  • The content changes according to the link we click in the navbar
  • The navbar (below the header or left aligned) will probably change according  to user level (admin, operator, visitor, etc).

At the end of the day we can realize that we don’t have to repeat over and over the same code, and we want to promote the re-usability of our code.

Thankfully, much of this work has been solved by many modern frameworks (re-inventing this is not an easy task). Let’s examine how we accomplish this with the Erdiko theming engine.

Paths and files

Let’s discuss what is in our Erdiko folder structure:

paths

For the moment just keep focusing on the “themes” folder and their nested folders. There are a lot of files right? Don’t worry let me explain:

  • themes: where each different theme is stored.
  • bootstrap: the default Erdiko’s theme.
  • views: This is where we put our HTML templates, where we render the data from our models.

Within the bootstrap theme:

  •  templates/layouts: we got templates in the most common variety: 1, 2, 3 columns and a menu.
  • templates/page: this part is the easier to understand, footer and header content, a messages file to show flash message alerts, and two special files: ‘google_header’ and ‘google_body’.  These last two allow us to insert Google Tag Manager and Google Analytics information.
  • theme.json: this file is one of the most important in order to use themes feature. Here we can set up all the previous files we talk, using json format.
  • app/config/{context}/default.json: another important config file to set up what theme will be used by the Erdiko application (theme, namespace, how many columns? And the home url). In order to demonstrate the flexibility of Erdiko framework, you can define many different contexts for a web application (default, production, etc).
  •  Default.php: the backbone file for Erdiko’s themes, here we give the main html5 structure to the final app  and also (and most important) we make use of the previous dynamic files (header, footer, example) calling the method:
Theme::getTemplateHtml().

In the same way we can show the dynamic code corresponding to the footer:

$this->getTemplateHtml('footer');

 We finally don’t know how this magic happens, how to mix dynamic data and html code in the exactly and specific parts. Is a dirty job but somebody has to do it… and the candidate is Mustache!

But what is mustache?

Mustache is a logic-less templating language that can be used to take most of the work out of creating re-usable HTML templates.

Let’s see a little example:
1. define the mustache template:

<h1>{{header}}</h1>

Please note the ‘header’ word between curly brackets.

2. define the model to user over that template:

{ "header": "Hello world!"}

3. Apply that model to the template and render it:

<h1>Hello world!</h1>

This pattern is extremely useful. Not just for re-use, but making debugging far easier.

Currently Mustache offers a lot of useful functionality but this is the most basic and important one. What we got here is the idea how it works, but remember that Mustache is One of many template systems, and the framework is not limited to use it.

Themes

The Theme class is the key element here, we need to understand how it works, their methods names are self-exaplanatory, the most important task is to process data and html templates to obtain a final html code. When a controller is created, a theme attribute is built in order to provide structure to the application. All necessary parts before to render are prepared by the _before() hook:

public function prepareTheme()
{
    $this->getResponse()
         ->setTheme(new \erdiko\core\Theme($this->getThemeName()));
}

Each time we call an action on a controller (except the ajax controllers) we automatically are setting a Theme, by inheriting the class \erdiko\core\Controller. When the action is done, tipically we create a new view passing a data array as second parameter:

$this->addView('examples/list', $data);

Or maybe we don’t want to show a view, we can just show a basic content with controller::setContent() method:

// Entering raw text on the page
$this->setContent("
    <div class=\"container\"><p>
    This is the simplest page possible.</p>
    </div>");

Then if the action is finished, the internal Theme will render their html stored. The most important methods of class Theme are:

  • addMeta(): Manages metadata of the application.
  • setPageTitle() and setBodyTitle(): Manages the title.
  • getCss() and getJs(): their setters add units of code, but the getters retrieves an array of that specific nature (array of css, or array of js stored). The result is a well formed <link> tag according to each array cell.
  • getTemplateHtml($aPartialToBeRendered): we can switch the template for a theme to render html with data.
  • toHtml(): finally we got html rendered.

In this first half of our blog post, we offer a big picture view of how theming works in Erdiko framework. At this point, we know that Controllers ‘under the hood’ already has prepared a theme ready to use with our defined content, and these themes are able of make html code. But they are not the only actors in this movie and the render concept needs to be explained a little more in depth. The next post we will continue talking about themes and discovering more actors and abilities. Thanks for reading!

Angular 2 Attribute Directives

Attribute Directives are a powerful way to affect the appearance or behavior of a DOM Element in your Angular 2 Application. We examine how attribute directives work, and how you can build re-usable custom code for your projects.

Introduction

AngularJS really introduced the concept of organizing and extending the DOM for use in real web applications. AngularJS 1.x brought us the idea of a Directive, or a way to indicate that a DOM element was “special” and will have a behaviors or an appearance that will be controlled by your code. AngularJS 2 took this idea and ran with it, but this also means we need to explain some stuff. We now have 3 tools at our disposal for interacting with the DOM: Components, Structural Directives and Attribute Directives.

Components, which you should have at least read about by now, are the most basic of the angular building blocks. Everything is a component and all components have directives; components are created from one or more directives. Directives are the method to identify a component’s behavior or associate a variable to a component.

Structural Directives are used to add or remove elements from the DOM. Common examples are *ngIf or *ngFor. These directives allows you manipulate a component based on a variable value or allow a component to iterate a series of values.

Finally, we have Attribute Directives. Attribute directives allow you to attach a behavior to an element or affect it’s appearance and re-use this throughout your application or package it up as something you use in all your projects.

Using Attribute Directives you can create a stylized DIV tag that formats all text and adds an event listener to change the color when the user mouses over the text. Show off your example code with some syntax highlighting!

I should also note that Attribute Directives can access and manipulate application values, but primarily are focused on affecting the component they have been attached. Think of this as more like CSS Selector Class on steroids. Make sure you do the “real math” of your application in your components.

Anatomy of an Attribute Directive & How to use it

Attribute Directives can be simple or complex. The simplest example of an Attribute Directive could be a simple CSS property attached to a P Tag:

<p [style.background]="'red'">I'm red!</p>

Anything more complex than the above example requires a little more wiring. Let’s look at an commented example from the official docs called “Highlight”:

// Import some stuff from the core library
import { Directive, ElementRef, Input, Renderer } from '@angular/core';

// create a Directive to decorate. To prevent confusion let's call this myHighlight to 
// illustrate the fact this this is a custom appearance
@Directive({ selector: '[myHighlight]' })

export class HighlightDirective {

    /* 
    This is a pretty simple example, we just need a constructor. Pass the element we wish to affect in as "el" and make sure we interact with the DOM renderer with the obvious name of "renderer"
    */
    constructor(el: ElementRef, renderer: Renderer) {

       /* 
       Set the element's Background Color CSS property to Yellow, as though we "highlighted" it with a marker.

       Note we reference the element itself as el.nativeElement so we actually update the rendered DOM model itself.
       */
       renderer.setElementStyle(el.nativeElement, 'backgroundColor', 'yellow');
    }

}

Use and apply your custom directive attribute in your application
<p myHighlight>Highlight me!</p>

Some Attribute Directive Examples

Italic & Underline

A very simple example showing how we can make something italic, and underlined, using a simple attribute directive.

@Directive({ selector: '[alItalic]' })

export class ItalicDirective {
 
  constructor(el: ElementRef, renderer: Renderer) {
    renderer.setElementStyle(el.nativeElement, 'fontStyle', 'italic');
    renderer.setElementStyle(el.nativeElement, 'textDecoration', 'underline');
  }
 
}

Plnkr

Blink

We can also bring back the much missed BLINK tag using an attribute directive. This example illustrates how we can actually encapsulate some logic and manipulate the DOM element’s CSS with this logic by using an attribute directive that can be placed on any block element.

@Directive({ selector: '[alBlink]' })

export class BlinkDirective {
  
    constructor(el: ElementRef, renderer: Renderer) {
      setInterval(() => { 
        let style = "hidden";
        if(el.nativeElement.style.visibility && el.nativeElement.style.visibility == "hidden") {
          style = "visible";
        }
        renderer.setElementStyle(el.nativeElement, 'visibility', style); 
      }, 750);
    }
    
}

Plnkr

Detected User Event – Click

Finally, here’s an example where we can listen for a user event (click) on an element by simply using an attribute directive.

import { Directive, ElementRef, Input, Renderer, HostListener } from '@angular/core';

@Directive({ selector: '[alClick]' })

export class ClickDirective {
  
  private _el: ElementRef;
  
  constructor(el: ElementRef, renderer: Renderer) { 
    this._el = el;
  }

  @HostListener('click') onClick() {
    let str = this._el.nativeElement.innerHTML;
    alert("innerHTML from the element you clicked: " + str);
  }
    
}

Plnkr

Conclusion

We really only scratched the surface of what you can do with Attribute Directives. AngularJS has always been a framework that allowed you to organize and extend your DOM based applications, but AngularJS 2 has taken this to a whole new level.

Hope you enjoyed this post!